Actinide-Rich or Actinide-Poor, Same r-Process Progenitor

Erika M. Holmbeck,^{1,2} Anna Frebel,^{3,2} G. C. McLaughlin,^{4,2} Matthew R. Mumpower,^{5,6,2} Trevor M. Sprouse,¹ and Rebecca Surman^{1,2}

- ¹Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

 ²JINA Center for the Evolution of the Elements, USA
- ³Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- ⁴Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
- ⁵ Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

 ⁶ Center for Theoretical Astrophysics, Los Alamos

National Laboratory, Los Alamos, NM, 87545, USA

The astrophysical production site of the heaviest elements in the universe remains a mystery. Incorporating heavy element signatures of metal-poor, r-process enhanced stars into theoretical studies of r-process production can offer crucial constraints on the origin of heavy elements. We apply the "Actinide-Dilution with Matching" model to a variety of stellar groups ranging from actinide-deficient to actinide-enhanced to empirically characterize r-process ejecta mass as a function of electron fraction (Y_e) . We find that actinide-boost stars do not indicate the need for a unique and separate r-process progenitor. Rather, small variations of neutron richness within the same type of r-process event can account for all observed levels of actinide enhancements. The very low- Y_e , fission-cycling ejecta of an r-process event need only constitute 10–30% of the total ejecta mass to accommodate most actinide abundances of metal-poor stars. We find that our empirical Y_e distributions of ejecta are similar to those inferred from studies of GW170817 mass ejecta ratios, which is consistent with neutron-star mergers being a source of the heavy elements in metal-poor, r-process enhanced stars.